Push and Pull Search for Solving Constrained Multi-objective Optimization Problems

نویسندگان

  • Zhun Fan
  • Wenji Li
  • Xinye Cai
  • Hui Li
  • Caimin Wei
  • Qingfu Zhang
  • Kalyanmoy Deb
  • Erik D. Goodman
چکیده

This paper proposes a push and pull search (PPS) framework for solving constrained multi-objective optimization problems (CMOPs). To be more specific, the proposed PPS divides the search process into two different stages, including the push and pull search stages. In the push stage, a multiobjective evolutionary algorithm (MOEA) is adopted to explore the search space without considering any constraints, which can help to get across infeasible regions very fast and approach the unconstrained Pareto front. Furthermore, the landscape of CMOPs with constraints can be probed and estimated in the push stage, which can be utilized to conduct the parameters setting for constraint-handling approaches applied in the pull stage. Then, a constrained multi-objective evolutionary algorithm (CMOEA) equipped with an improved epsilon constraint-handling is applied to pull the infeasible individuals achieved in the push stage to the feasible and non-dominated regions. Compared with other CMOEAs, the proposed PPS method can more efficiently get across infeasible regions and converge to the feasible and nondominated regions by applying push and pull search strategies at different stages. To evaluate the performance regarding convergence and diversity, a set of benchmark CMOPs is used to test the proposed PPS and compare with other five CMOEAs, including MOEA/D-CDP, MOEA/D-SR, C-MOEA/D, MOEA/DEpsilon and MOEA/D-IEpsilon. The comprehensive experimental results demonstrate that the proposed PPS achieves significantly better or competitive performance than the other five CMOEAs on most of the benchmark set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Multi-Objective Optimization Problems in Mechanical Engineering Design Using Bees Algorithm

Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using classical optimization methods, this paper presents a Multi-Objective Bees Algorithm (MOBA) for solving the multi-objective optimal of mechanical engineering problems design. In the pre...

متن کامل

A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...

متن کامل

Solving ‎‎‎Multi-objective Optimal Control Problems of chemical ‎processes ‎using ‎Hybrid ‎Evolutionary ‎Algorithm

Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier‎. ‎This paper applies an evolutionary optimization scheme‎, ‎inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...

متن کامل

Optimization of Thermal Instability Resistance of FG Flat Structures using an Improved Multi-objective Harmony Search Algorithm

This paper presents a clear monograph on the optimization of thermal instability resistance of the FG (functionally graded) flat structures. For this aim, two FG flat structures, namely an FG beam and an FG circular plate, are considered. These structures are assumed to obey the first-order shear deformation theory, three-parameters power-law distribution of the constituents, and clamped bounda...

متن کامل

An Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm

In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.05915  شماره 

صفحات  -

تاریخ انتشار 2017